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The 3-periodic nets of genus 3 (‘minimal nets’) are reviewed and their

symmetries re-examined. Although they are all crystallographic, seven of the 15

only have maximum-symmetry embeddings if some links are allowed to have

zero length. The connection between the minimal nets and the genus-3 zero-

mean-curvature surfaces (‘minimal minimal’ surfaces) is explored by deter-

mining the surface associated with a net that has a self-dual tiling. The fact that

there are only five such surfaces but 15 minimal nets is rationalized by showing

that all the minimal nets can serve as the labyrinth graph of one of the known

minimal minimal surfaces.

1. Introduction

The special periodic nets known as minimal nets and the

periodic surfaces known as minimal surfaces are of excep-

tional importance in the chemistry of crystalline materials. In

particular minimal surfaces occur in materials on a variety of

length scales and also play a key role in the systematic

enumeration of periodic nets. In this paper we review what is

known about them and derive some new properties that

emphasize the close relationship between nets and surfaces.

The term net is used here to refer to a periodic simple

connected graph. Minimal nets are those that have the

minimal number of vertices and edges in their repeat units.

More specifically, their quotient graphs (Chung et al., 1984)

have cyclomatic number, g, equal to d where d is the peri-

odicity of the net. In this paper we are concerned exclusively

with 3-periodic structures, so d = 3. It is elementary to show

that if the quotient graph has v vertices and e edges, then g = 1

+ e � v. It is also well established that for g = 3 there are

exactly 15 minimal nets (Beukemann & Klee, 1992). In the

Reticular Chemistry Structure Resource (RCSR) database of

nets (O’Keeffe et al., 2008), g is identified as the genus of the

net.

A surface has two principal curvatures k1 and k2 that are the

maximum and minimum values. The mean curvature is (k1 +

k2)/2 and the Gaussian curvature is K = k1k2. 3-Periodic

minimal surfaces (TPMSs) are those for which the mean

curvature is everywhere zero. These may also be characterized

by genus. A useful measure of their topology is offered by the

genus of a volume of the surface, bounded by the primitive

translational unit cell of the oriented TPMS (defined by three

lattice vectors of the oriented surface whose two sides are

colored distinctly, so that isometrics of the surface do not swap

sides). This genus can be determined in a variety of ways

(Hyde, 1989; Fischer & Koch, 1989); it must again be at least 3

for 3-periodic nets (Meeks, 1977, 1990), so in what follows we

call TPMSs of genus 3 minimal minimal surfaces (MMSs).

Note that for a tiling of a surface in which the tiling has v

vertices, e edges and f faces (tiles) per repeat unit f � e + v = 2

� 2g.

TPMSs play a central role in crystal chemistry and in

materials science. Among the many TPMSs that have been

explored in a mathematical context, it is clear that those of

genus 3 are most relevant to the science of materials. Their

enumeration is not entirely straightforward; at present five

distinct MMSs are recognized. Four of these were described in

the 19th century (Schwarz, 1890) but the fifth, the gyroid or G

surface, was not recognized until much later (Schoen, 1970,

2012). It has since been recognized that the gyroid is the most

prevalent minimal surface in nature, found in natural and

artificial materials, from chitin assemblies in butterfly wings, to

liquid crystal structures, to atomic assemblies in microporous

materials including mesoporous silicas (Hyde et al., 2008).

Unlike the P and D surfaces, the G surface contains neither

straight lines in the surface [which are coincident with twofold

axes of the (unoriented) TPMS] nor mirror planes. In the

language of minimal surface theory, it is a Bonnet inter-

mediate case, while the P and D examples are Bonnet end-

members. The P and D surfaces are also of some importance

in materials science (Han et al., 2011).

The known MMSs are called balance surfaces because they

divide space into two labyrinths that are either identical or (in

the case of G) related as mirror images. The genus of the net of

the channels in the labyrinth (the labyrinth graph) is the same

as that of the surface (Fischer & Koch, 1989; Hyde, 1989);

accordingly the labyrinth graph must be one of the minimal

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=eo5026&bbid=BB31
http://crossmark.crossref.org/dialog/?doi=10.1107/S0108767313018370&domain=pdf&date_stamp=2013-07-26


nets. As there are 15 minimal nets, but only five known

minimal minimal surfaces, the question arises as to whether

there are other MMSs waiting discovery. Given the particular

relevance of these surfaces to materials science, especially in

mesoporous materials, it is disturbing to note that the catalog

of them remains possibly incomplete.

A flat point of a TPMS is a point where the Gaussian

curvature vanishes. The structure of the TPMS in the neigh-

borhood of these flat points determines the flat-point order, b.

The genus is related to the sum (over the unit cell) of flat-point

orders bi by g ¼ 1þ
P

i bi=4 (Hyde, 1989). Meeks (1977)

established that for all MMSs b = 1, so these simplest TPMSs

contain eight distinct isolated flat points.

The ‘shape’ of each genus-3 TPMS is governed locally by

the surface normal vectors at these eight flat points. For

example, the cubic P and D TPMSs contain eight flat points,

oriented towards the eight h111i directions. We note that,

despite their locally identical structures, these two TPMSs are

very different globally. Essentially, they differ in how their

surface patches are stitched together to form periodic struc-

tures in space. To see that, consider wrapping identical two-

dimensional 43.6 hyperbolic nets onto the P, G and D surfaces

(Fig. 1). All give crystalline nets; however, the nets wrap to

give distinct ‘collars’ around channels of these surfaces,

resulting in different three-dimensional net topologies, namely

rho (on the P), gie (on the G) and uks (on the D). The first two

of these describe the framework topologies of zeolites with

framework types RHO and BSV. We note that systematic

generation of 3-periodic nets by projection of hyperbolic

tilings onto 3-periodic Euclidean surfaces is the basis of the

EPINET project (Ramsden et al., 2009).

These minimal surfaces admit lower-symmetry variants;

indeed, Meeks (1977; see also Oguey, 1999) established that a

five-parameter family of deformations is allowed for a generic

(triclinic) genus-3 minimal surface. Explicit constructions of

some lower-symmetry MMSs, including (five-parameter)

triclinic genus-3 TPMSs, can be found in Fogden & Hyde

(1992). For example, the cubic P and D surfaces have a

common rhombohedral MMS, the so-called rPD surface. All

the Bonnet end-members admit symmetry-lowering defor-

mations that preserve the minimal surface geometry (Meeks,

1977). Rhombohedral and tetragonal variants of the G have

also been found (Fogden et al., 1993; Weyhaupt, 2008).

To summarize: the exploration of TPMSs that are Bonnet

end-members is largely complete. That search yields generic

triclinic TPMSs, capable of a (limited) range of deformations

of the triclinic lattice metric. All of these examples are

symmetry-reduced variations of the five most symmetric

genus-3 TPMSs, the P;D;CLP and H surfaces typical exam-

ples show hybrid character, such as the rPD surfaces, and the

(monoclinic) mPCLP surface (Fogden & Hyde, 1992, 1999). In

contrast, however, Bonnet intermediate surfaces such as G are

far less well understood (Weyhaupt, 2008). The completeness

or otherwise of the enumeration is one of the questions

addressed in this paper.

It proves valuable first to re-examine the symmetries of

embeddings of the minimal nets. This leads us to recognize an

important class of crystallographic nets in which certain nodes

coincide in a maximum-symmetry embedding.

2. Minimal nets and their embeddings

It is convenient to distinguish between abstract nets and their

Euclidean embeddings (Chung et al., 1984). Specifically the

vertices and edges of the graph correspond in this paper to

nodes and kinks in an embedding. One reason for doing this is

that we want to refer to the length of a link, whereas the

‘length’ of an edge has no meaning.

In an equilibrium (or barycentric) placement each vertex is

assigned coordinates that are the mean of the coordinates of

its neighbors. If the coordinates of one vertex are chosen (e.g.

as 0, 0, 0) those of the others are uniquely determined. This

provides a convenient identification of vertices and edges

that allows determination of symmetry (Delgado-Friedrich &

O’Keeffe, 2003), but a placement is not an embedding as no

metric is assigned. Nets for which, in an equilibrium place-

ment, the vertices have distinct coordinates have a combina-

torial symmetry group that is isomorphic with a space group

and have embeddings in that space group (Delgado-

Friedrichs, 2005). In what follows we refer to that space group

as ‘the symmetry of the net’.

Eight of the minimal nets have distinct barycentric coordi-

nates for all vertices and have been assigned RCSR symbols;

their embeddings, natural tilings and other properties have

been described (Bonneau et al., 2004). These eight fall into two

subgroups.

There are five ‘parent’ graphs with symbols pcu, dia, srs, cds,

hms. These are recognized as the labyrinth graphs of the

known MMSs P;D;G;CLP;H, respectively. In the embed-

dings of these nets, for the unit cell to have nonzero volume all

links must have nonzero edge length. There is a second set of

three, with symbols ths, tfa, tfc, that were not previously

associated with minimal surfaces. We note that for this set

some links can be made arbitrarily short or even of zero length

with finite unit-cell volume. We discuss the surfaces associated

with these three nets below.

Quotient graphs of the minimal nets are shown in Figs. 2

and 3 in a way that is meant to be suggestive. In the figures the

edges corresponding to links that must have nonzero length

are shown in black. The edges corresponding to links that can

be zero are shown in blue. Note that, if these edges are made

of zero ‘length’ and the vertices they join subsumed in one

vertex, we recover the parent graph.
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Figure 1
43.6 tilings of the P;G and D surfaces.



There remain seven minimal nets, for which we use the

symbols assigned by Beukemann & Klee (1992), whose

quotient graphs have bridges (or cut edges). A bridge in a

graph is an edge that joins two otherwise disjoint parts. For

these graphs, pairs of vertices joined by bridges have the same

coordinates in an equilibrium placement. However, such

vertices can be distinguished in these cases as they have

different sets of edges and again a symmetry, isomorphic to a

space group, can be determined (Eon, 2007). However, the

only possible embeddings in that symmetry require the links

connecting nodes corresponding to vertices with identical

barycentric coordinates to have zero length. The edges

corresponding to these links are shown in red in Figs. 2 and 3.

The symmetries of these graphs (Table 1) appear not to have

been given explicitly before, and embeddings of these nets

have previously been given in subgroups that allow finite links

(Beukemann & Klee, 1992; Eon, 2011). These graphs are

derived from pcu, cds, hms and tfc and are shown in Figs. 4–6

with the ideally zero-length links shown as short black links. It

should be clear that when those links really are of zero length,

the remaining links form patterns identical1 to those of pcu,

tfc, cds and hms, and thus could also be considered as the

labyrinth graphs of the P;P CLP and H surfaces, respectively.

Eon (2011) has given the maximum possible symmetry for an

embedding with links of finite length. These are compared

with the full symmetry of the graph in Table 1.

Many, but not all, nets admit a tiling. By a tiling we mean a

division of space into finite generalized polyhedra or cages

that are topological spheres and which fill space when packed

together face-to face. In a dual tiling new vertices are placed in

the center of the original tiles and joined by new edges that

pass through the faces of the original tiles. Noting that the dual

of the dual is the original tiling completes the definition. A

proper tiling of a net is one for which the symmetry of the

tiling is the same as the symmetry of the net.

For the ‘parent’ nets that are identified above as the

labyrinth graphs of the known MMSs, there is a unique proper

tiling that has the property of being self-dual. The other three

nets without collisions (i.e. without vertices with identical

barycentric coordinates, ths, tfa, tfc) have two proper tilings; in

each case one of them is self-dual.2 In x3 we show how tilings

derived from these self-dual tilings illustrate the surface for

which these nets are labyrinth graphs. The two nets, of the

tiling and the dual, are related by symmetry so the assembly of

two (denoted by -c in the RCSR) has a higher symmetry. The

symmetries of a single net and the pairs of nets are listed in

Table 2.
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Figure 3
The nine quotient graphs of minimal nets not shown in Fig. 2. Bridges are
shown in red. Blue edges correspond to links that can have zero length
(see text). Each box contains a ‘parent’ graph and its derived graphs.
Symbols other than three-letter RCSR symbols are those of Beukemann
& Klee (1992).

Table 1
The symmetry of the minimal nets with collisions.

The shape symmetry is the symmetry of the pattern of finite links in a
maximum-symmetry embedding. In parentheses is the surface with which this
shape corresponds to the labyrinth graph. The maximum symmetry is the
graph symmetry. The finite-link symmetry is the maximum symmetry for an
embedding with finite link length as reported by Eon (2011).

Net Shape symmetry
Maximum
symmetry

Finite-link
symmetry

4(3)4 Pm�33m ðPÞ Pm�33m R32
3(32,4)4 Pm�33m ðPÞ Pmmm C2
2(3,5)2 Pm�33m ðPÞ P4/mmm Cmm2
4(3)5 P42/mmc (CLP) P42/mmc Ama2
3(32,4)5 P42/mmc (CLP) Pmmm Pmm2
4(3)3 Cmmm (P) Cmmm Cmm2
3(32,4)2 P�66m2 ðHÞ P�66m2 Cmm2

Figure 2
Five quotient graphs of minimal nets ‘derived’ from pcu. Bridges are
shown in red. Blue edges correspond to links that can have zero length
(see text). Symbols other than three-letter RCSR symbols are those of
Beukemann & Klee (1992).

1 Grünbaum (2003) has suggested the term isomeghethic for structures with
the same pattern of nodes and links.
2 For nets with more than one proper tiling, rules have been devised to
determine a unique natural tiling (Delgado-Friedrichs et al., 2003; Blatov et al.,
2007). One rule is that in a natural tiling no tile should have one face larger
than the rest. The self-dual tilings for tfc and ths violate this rule. The natural
tiling for tfa is self-dual. This last statement corrects an error in Bonneau et al.
(2004).



We have not found tilings for the seven minimal nets with

collisions, but we note that the absence of a tiling can be

difficult to prove.

3. Surfaces associated with nets

Since the work of Schoen (1970), the relation between TPMSs

and 3-periodic nets has been recognized. Schoen described the

P;D and G surfaces in terms of their ‘skeletal nets’, what we

now call ‘labyrinth graphs’, which follow the channels of these

surfaces. These graphs are the genus-3 pcu (P), dia (D) and srs

(G) nets. Two more minimal nets describe the non-cubic

Bonnet end-members [hms (H) and cds (CLP)].

It should be recognized, however, that the concept of a

labyrinth graph, while almost self-evident for the most

symmetric TPMS, is murky at best for the lower-symmetry

variants, though it can be made rigorous with some effort

(Schröder et al., 2003).

We can ask the inverse question: what is the surface asso-

ciated with a given net? If we consider nodes of an embedding

as small balls and links as small cylinders, it is clear that the

surface of this assembly is a periodic surface unique to the net.

But if one asks what is the balance surface separating two

identical nets such as those of a tiling and its dual for a net with

self-dual tiling the answer is less clear. A strategy to suggest an

answer is as follows.

In the Dress approach (Dress, 1984) to describing tilings in

terms of extended Schläfli symbols (Delaney–Dress symbols,

or D symbols), a tile is divided into simplicial chambers. In the

three-dimensional case the vertices of the tetrahedral cham-

bers are the center of a tile, the center of a face of that tile, the

center of an edge of that face and a vertex of that edge. Fig. 7

shows such a division of the proper tile for the diamond net

(dia). Consider now this space filling of tetrahedra as a tiling –

the dual tiling will have vertices on a surface intermediate

between the original net (in this case dia) and its dual.

Furthermore that surface will be tiled by a four-valent tiling –

in fact by quadrangles and larger polygons that form a net that

we call the -t net, in this example dia-t (also known to the

RCSR as fuf). The three-dimensional tiling of the -t net has

two kinds of tile – tiles, with two large faces, that are topolo-

gical prisms, and that correspond to edges of the original net,

and tiles, with z large faces, corresponding to z-coordinated

vertices of the original net.

Recall that for a tiling of a surface of genus g with v vertices,

e edges and f faces (tiles), v � e + f = 2 � 2g. For a four-valent

tiling with fi i-sided tiles, e = 2v and e =
P

(i/2)fi. From this we
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Figure 6
Embeddings of the minimal nets with collisions derived from hms and tfc.
The link shown in black has zero length for a full symmetry (given at the
bottom of the figure) embedding. Symbols as in Fig. 3.

Figure 5
Embeddings of the minimal nets with collisions derived from cds. The link
shown in black has zero length for a full symmetry (given at the bottom of
the figure) embedding. Symbols as in Fig. 3.

Figure 4
Embeddings of the minimal nets with collisions derived from pcu. The
link shown in black has zero length for a full symmetry (given at the
bottom of the figure) embedding. Symbols as in Fig. 2.

Table 2
Symmetries of the minimal nets without collisions and of an interpene-
trating pair of those nets.

Net (surface) Single net Pair of nets

pcu (P) Pm�33m Im�33m
srs (G) I4132 Ia�33d
dia (D) Fd�33m Pn�33m
cds (CLP) P42/mmc P42/mcm
hms (H) P�66m2 P63/mmc
ths I41/amd P42/nnm
tfa I �44m2 I41/amd
tfc Cmmm Fmmm



find that
P

(i� 4)fi = 8g� 8. Note that f4 is unconstrained. For

an MMS with g = 3 and quadrangular and hexagonal tiles, f6 =

8. In fact for the -t tiling of those nets that are the labyrinth

graphs of the genus-3 minimal surfaces the centers of the

hexagons correspond to the flat points of that surface (see

Figs. 8–10).

Fig. 8 shows part of a tiling for the tfc-t net. Note how

the tiles for a 4-coordinated and two 3-coordinated vertices

together with the tiles for their common edges merge to make

a tile for a 6-coordinated vertex. The 6-coordinated assemblies

then combine to form a surface with the same shape as the P

surface. This means that the tfa net could serve as the labyr-

inth graph of the P surface as well as the pcu net. Thus the

relation of nets to surfaces is many to one, as already indicated

by Schröder et al. (2003). Fig. 9 shows how the tiles for tfa-t

and ths-t similarly combine to give a surface that has the

labyrinths of the D surface.

Fig. 10 shows the tiling for srs-t. This illustrates a tiling of

the G surface and is shown compared with a proper tile of the

srs net. It also illustrates that the surface is an inflated version

of the net.

What of other tilings of minimal nets? Recall that the genus

of a net is given by 1 + e � v. For a tiling of three-dimensional

Euclidean space with t tiles per repeat unit v � e = t � f

(Coxeter, 1973). But t � f is equal to v � e for the dual tiling.

Accordingly, the net of a dual of a tiling of a minimal net is

another minimal net. Indeed, Bonneau et al. (2004) showed

that there were 12 distinct ways3 of dissecting a cube into

smaller tiles and that all these tilings have duals which were

tilings of one of the other minimal nets without collisions.

However, there is a powerful theorem, valid only for genus-3

TPMSs, or MMSs. Meeks (1977) has proven that all flat points

on MMSs are centers of inversion symmetry for the structure.

This implies, in particular, that the labyrinths of such surfaces

are related to each other via inversion symmetry; therefore

their labyrinth graphs are necessarily congruent or related as

mirror images and thus identical topologically. Accordingly

the -t tilings, derived in turn from self-dual tilings, that we have

described are the only cases to be considered.

We have now shown that all of the 15 minimal nets can serve

as the labyrinth graph of one of the five known MMSs, and this

was one of our main goals: to show that there are not neces-

sarily any yet undiscovered MMSs despite the larger number

of minimal nets than known MMSs. In x4 we bolster this

observation by more quantitative examination of the optimal

surfaces separating pairs of identical minimal nets.

For higher-genus nets that do not have proper self-dual

tilings one still generates an intermediate surface that may be

a minimal surface. We illustrate this (Fig. 11) for the pair of

nets bcu (the 8-coordinated net of the body-centered cubic

lattice) and the 4-coordinated nbo net whose unique proper

tilings are duals. The net illustrates bcu-t (necessarily the same,

because of the duality, as nbo-t) that is a tiling of the inter-
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Figure 7
Left, a tile of the dia net. Right, the same divided into chambers.

Figure 9
Tilings of the -t nets of pcu and dia and the three minimal nets not
previously identified as labyrinth graphs of triply periodic surfaces. Note
that pcu-t is the same as rho (Fig. 1).

Figure 8
Left, tiles of the -t net for tfc. Right, an assembly of such tiles. Note how
the tile (yellow) with four large faces and the two tiles with three large
faces (orange) combine with two edge tiles (red) to form a larger tile with
four orange and two yellow large faces. These are then linked by green
edge tiles into a structure that is a slight distortion of the cubic P surface.

Figure 10
Left, a proper tile of the srs net. Right, part of the srs-t structure – a tiling
of the G surface. See also Fig. 12.

3 These correspond to the 12 distinct spanning trees that are subgraphs of the
minimal net quotient graphs (Bonneau et al., 2004).



mediate surface by quadrangles and octagons. The surface

itself is the well known I-WP minimal surface. Note that the

inversion centers in this structure are at the nodes of the

labyrinth graphs, in contrast to the case for genus 3.

4. Evolver experiments

The resemblance of the ‘-t’ tilings above to genus-3 minimal

triply periodic minimal surfaces is striking, though qualitative

only. Can this be better quantified? A dual net pair can be

used more directly to form approximations to TPMSs as

follows. First, form Voronoi cells around each node of the

embedded net combined with the net of its dual tiling. By

construction, the interior of each cell is closer to the single

internal net node than to any other node of the net pair. Next,

remove any faces that are pierced by net links. The resulting

structure is a topological sponge, with two open channels,

made of planar faces. (It is often more convenient, and affords

more rapid convergence, to place centers at the midpoints of

the edges, generating a more finely facetted sponge.) Lastly,

relax this facetted sponge to minimal surface area. In what

follows we describe results obtained using the Surface Evolver

program of Brakke (http://www.susqu.edu/brakke/evolver/),

without changing the unit-cell shape or the topology of the

sponge, to minimize the mean curvature of the surface. The

resulting smooth surface then approximates a periodic

minimal surface. We illustrate this procedure for a pair of dual

srs nets in Fig. 12. We can compare the evolved surface to an

exact embedding of the G surface and there is no doubt that

the solution converges to the gyroid TPMS. This is confirmed

by plotting both surfaces together; provided a reasonable

number of polygons are chosen in both cases they rapidly

merge into a single surface, proving their equivalence with the

numerical accuracy of the Evolver process.

A similar procedure for the dia, pcu, hms and cds nets (Fig.

13) results in evolved surfaces that contain straight lines lying

in the surfaces. Those straight lines coincide with axes of

twofold symmetry that exchange the (self-)dual net pair so are
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Figure 11
Two views of a tiling of the I-WP surface. The two periodic structures
depicted combine to fill space. The 3-periodic nets bcu-t and nbo-t are
identical.

Figure 12
Left: the facetted sponge formed from Voronoi domains for a pair of (red
and green) dual srs nets and (center) the relaxed surface generated by
Surface Evolver. This surface is indistinguishable from the G minimal
minimal surface shown on the right.

Figure 13
The facetted sponges (left) and the surfaces generated by Surface Evolver
(right) for four ‘parent’ graphs.

Figure 14
The facetted sponges (right) and the surfaces generated by the Evolver
(right) for the nets tfa, tfc, and ths.



necessarily present in the relaxed Voronoi cells. In all these

cases except hms, the straight lines form closed skew polygons

(with four, four and six sides, respectively). These polygons are

precisely those found in the simpler genus-3 minimal surfaces

and are signatures of those surfaces (see, for example, Fischer

& Koch, 1987; Koch & Fischer, 1988). The hms example gives

a stack of parallel hcb net layers. This skeleton defines the

lines in the genus-3 H minimal surface (Koch & Fischer, 1988).

Similarly, the Evolver procedure applied to the nets tfa, ths

and tfc (Fig. 14) generates surfaces with hyperbolic patches

bounded by straight lines that can be used to identify the

surface uniquely. The first pair of cases yields the skew

pentagon characteristic of a tetragonal deformation of the D

surface, the genus-3 tD surface (Fogden & Hyde, 1992).4

Clearly, then, all the collision-free minimal nets yield known

MMSs. The remaining eight graphs with collisions in their

maximum-symmetry forms are likewise labyrinth graphs of

the five known MMSs and all 15 minimal nets are accounted

for.
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4 The sponge formed from the tfa net pair relaxes in Evolver to a surface with
patches bounded by lines that are not the full complement of those formed in
the tD surface. However, a simple argument proves that the surface with the
full complement of lines must have a smaller area than that we repeatedly
obtain numerically. The tfc net pair gives a relaxed surface whose patches are
identical to those of an orthorhombic distortion of the P surface, namely the
oPb surface (Fogden & Hyde, 1992).
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